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1. INTRODUCTION

1.1. Consider a C2 diffeomorphism f of a compact smooth Riemannian
manifoldM preserving a smooth probability measure m. Assume that f has
nonzero Lyapunov exponents on an invariant set L of positive measure.
It is well-known (see ref. 1) that the ergodic components of f |L are all
of positive measure, and hence there can be only contably many such
components.
However, not much is known about the topological structure of the set

L nor about the topological structure of ergodic components. In particu-
lar, one may wonder whether ergodic components (and hence the set L)
are open (mod 0)—the phenomenon known as local ergodicity. Some
criteria for local ergodicity were obtained in refs. 1 and 2 while some basic
ideas go back to pioneering work of Ruelle (3) and Sinai. (4) In ref. 5, the



authors constructed an example of a volume preserving diffeomorphism
with nonzero Lyapunov exponents and a countable (not finite) number of
ergodic components which are all open (mod 0). Note that if the ergodic
components are open (mod 0) and f is topologically transitive then f |L
is ergodic.
In this connection the following two problems are of interest:

Problem 1. Is there a volume preserving diffeomorphism with a.e.
nonzero Lyapunov exponents such that some (or even all) of the ergodic
components with positive measure are not open (mod 0)?

Problem 2. Is there a volume preserving diffeomorphism which has
nonzero Lyapunov exponents on an open (mod 0) and dense set U which
has positive but not full measure? Is there a volume preserving diffeo-
morphism with the above property such that f | U is ergodic?

1.2. Systems with nonzero Lyapunov exponents are nonuniformly
hyperbolic. In this paper we deal with the situation when hyperbolicity is
uniform throughout the manifold in some but not all directions. More
precisely, we assume that f is partially hyperbolic, i.e., the tangent
bundle TM can be split into three df-invariant continuous subbundles
(distributions)

TM=Es À Ec À Eu.

The differential df contracts uniformly over x ¥M along the strongly
stable subspace E s(x), it expands uniformly along the strongly unstable
subspace Eu(x), and it can act either as nonuniform contraction or expan-
sion with weaker rates along the central direction Ec(x); see the next
section for more details. Partially hyperbolic systems were first studied in
the 1970’s by Brin, Pesin, Hirsch, Pugh and Shub, see, e.g., refs. 6–9. The
definition given here was introduced in ref. 6. The presence of uniformly
contracting and expanding directions is crucial in studying the global
behavior and ergodic properties of these systems.

1.3. The distributions E s(x) and Eu(x) are integrable and their inte-
grable manifolds form two transversal foliations of M, the strongly stable
and strongly unstable foliations of M, which we denote by W s and Wu

respectively. For every x ¥M the leaves W s(x) and Wu(x) of the foliations
containing x are smooth immersed submanifolds in M called the strongly
stable and strongly unstable global manifolds at x. If y ¥W s(x), then
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d(fn(x), fn(y))Q 0 with an exponential rate as nQ., and if y ¥Wu(x),
then d(fn(x), fn(y))Q 0 with an exponential rate as nQ −..

1.4. We say that a partially hyperbolic diffeomorphism with invariant
measure m has negative central exponents (on a set A) if for m-a.e., x (in the
set A) we have q(x, v) < 0 for all nonzero v ¥ Ec(v), where q(x, v) is the
Lyapunov exponent (defined in the next section). The definition of positive
central exponents is analogous. When f has negative central exponents
on A, the strongly unstable subspace Eu(x) includes all of the expanding
directions at x for a.e. x ¥ A.
By exploiting continuity and the absolute continuity property of the

strongly unstable foliation one can establish the following result.

Theorem 1. Let f be a C2 diffeomorphism of a compact smooth
Riemannian manifold M preserving a smooth measure m. Assume that
there exists an invariant subset A …M with m(A) > 0 on which f has nega-
tive central exponents. Then every ergodic component of f | A is open
(mod 0) and so is the set A.

If the map f is topologically transitive, then A is dense and f | A is
ergodic.

1.5. Apparently topological transitivity does not guarantee that the
set A is of full measure and one needs a stronger requirement, which we
now discuss.
Two points p, q ¥M are called accessible if there are points p=

z0, z1,..., za−1, za=q, zi ¥M such that zi ¥Wu(zi−1) or zi ¥W s(zi−1) for i=
1,..., a. The collection of points z0, z1,..., za is called a us-path connecting
p and q and is denoted by [p, q]=[z0, z1,..., za]. Accessibility is an
equivalence relation. The diffeomorphism f is said to have the accessibility
property if the partition into accessibility classes is trivial (i.e., any two
points p, q ¥M are accessible) and to have the essential accessibility prop-
erty if the partition into accessibility classes is ergodic (i.e., a measurable
union of equivalence classes must have zero or full measure).
It was shown in ref. 10 that if a.e. pair of points in M is joined by a

us-path, then the orbit of, a.e., point is dense in M. We shall see that the
proof actually requires only essential accessibility. This and Theorem 1
imply the following result.

Theorem 2. Let f be a C2 partially hyperbolic diffeomorphism of a
compact smooth Riemannian manifold M preserving a smooth measure m.
Assume that f has negative central exponents on an invariant set A of
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positive measure and is essentially accessible. Then f has negative central
exponents on the whole of M, the set A has full measure, f has nonzero
Lyapunov exponents, a.e., and f is ergodic.

1.6. The proofs of Theorems 1 and 2 are based on methods devel-
oped in refs. 1 and 11. In proving Theorem 2 we also use some ideas from
ref. 12 to make a crucial step: once a partially hyperbolic diffeomorphism
has negative Lyapunov exponents in the central direction on a set of posi-
tive measure, then this set indeed has full measure. This phenomenon has
been observed in other situations, for example billiards and geodesic flows
on negatively curved manifolds.

1.7. Accessibility plays a crucial role in stable ergodicity theory.
A diffeomorphism f is called stably ergodic if it preserves a smooth
measure m and there exists a C2-open neighborhood U of f in Diff 2(M)
such that any diffeomorphism g ¥U which preserves m is ergodic with
respect to m. Volume preserving Anosov diffeomorphisms are stably
ergodic. Recently Grayson et al. (13) proved that the time one map of the
geodesic flow of a surface of constant negative curvature is stably ergodic.
This result has been generalized several times. (12, 14–16) These papers give
conditions under which a partially hyperbolic diffeomorphism f is stably
ergodic (with respect to a smooth measure onM). Among these conditions,
the most crucial one is stable accessibility. A diffeomorphism f is said to
be stably accessible if there exists a C1-open neighborhood U of f in
Diff 2(M) such that any diffeomorphism g ¥U is accessible. Pugh and
Shub (18) have formulated two conjectures relating accessibility and stable
ergodicity.

Conjecture 1. Stably ergodic diffeomorphisms form an open and
dense set in the space of partially hyperbolic diffeomorphisms.

Conjecture 2. A volume preserving partially hyperbolic diffeomor-
phism with the essential accessibility property is ergodic. In particular a
volume preserving partially hyperbolic diffeomorphism that is stably
accessible should be stably ergodic.

In ref. 16, Pugh and Shub proved Conjecture 2 under some additional
assumptions of which the most restrictive one is center-bunching, that is the
norm ||df ±1 | Ec(x)|| should be close to 1 uniformly over x. A natural way
to relax this condition is to consider its nonuniform version. That is, to
consider the cases in which the Lyapunov exponents in the central direction
are: (1) all negative (or all positive), (2) all nonzero (i.e., some negative and
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some positive), (3) all zero, or (4) not all nonzero (i.e., some zero). We
think that splitting the study of stable ergodicity of partially hyperbolic
diffeomorphisms into these four cases may be rewarding. In fact, the
approach of Pugh and Shub gives no information on the quantitative
properties of the diffeomorphisms they consider and quite different tools
are currently used to obtain some quantitative information on the system
in the non-uniformly hyperbolic and zero exponent cases (see refs. 19
and 20).
In this paper we study the first of the above cases. Surprisingly, the

diffeomorphisms we consider are stably ergodic under the much weaker
assumption that only the unperturbed map is accessible. In other words
no information about the perturbation is required to establish stable
ergodicity.

Theorem 3. Let f be a C2 partially hyperbolic diffeomorphism of a
compact smooth Riemannian manifold M preserving a smooth measure m.
Assume that f is accessible and has negative central exponents on a set of
positive measure. Then f is stably ergodic.

We also prove a related result.

Theorem 4. Let f be a C2 partially hyperbolic diffeomorphism of a
compact smooth Riemannian manifold M preserving a smooth measure m.
Assume that f is accessible and

F
M
ln ||df | Ecf(x)|| dm(x) < 0.

Then f is stably ergodic.

Ideas from ref. 21 about hyperbolic times are used in the proof of
these theorems.

1.8. We now consider the case when f is partially hyperbolic and has
positive central exponents. Note that the inverse map is partially hyper-
bolic, preserves the measure m, and has negative central exponents. Apply-
ing the earlier results to the inverse map we obtain that Theorems 1, 2, and
3 hold for f. Theorem 4 also holds if the inequality is replaced by

F
M
ln ||df−1 | Ecf(x)||

−1 dm(x) > 0.

1.9. In view of Theorem 3 the following problems are of interest.
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Problem 3. Is Conjecture 2 true if all Lyapunov exponents of f are
non-zero?

Problem 4. Is Conjecture 2 true if all Lyapunov exponents of f in
the central direction are zero?

1.10. An important example of a diffeomorphism satisfying the con-
dition of Theorem 3 was constructed in ref. 22. It is a small perturbation of
a circle extension of an Anosov diffeomorphism. Further examples, includ-
ing modifications of Anosov diffeomorphisms and time-one maps of
Anosov flows can be found in ref. 12 and 19. In this connection we propose
the following problem.

Problem 5. Let f be a stably ergodic diffeomorphism. Can it be
approximated by a diffeomorphism having (stably) non-zero Lyapunov
exponents?

See refs. 23 and 24 for some evidence that this might be true.

1.11. Some of the methods presented here were used in ref. 10 to
show that any manifold carries a Bernoulli diffeomorphism with non-zero
Lyapunov exponents. The following problem arises naturally.

Problem 6. Which manifolds carry an open set of Ck diffeomor-
phisms with non-zero Lyapunov exponents?

For k=1, it follows from a result of Mane (23, 25) that T2 is the only
surface with this property. Thus the answer to this question is not always
positive. It seems likely (see Problem 5) that the answer is positive if the
manifold admits a partially hyperbolic diffeomorphism, but even this is
unknown.

2. PRELIMINARIES

See refs. 26–28 for more details.
A diffeomorphism f of a compact smooth Riemannian manifoldM is

called (uniformly) partially hyperbolic if for every x ¥M the tangent space
at x admits an invariant splitting

TxM=Es(x) À Ec(x) À Eu(x)
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into strongly stable E s(x)=Esf(x), central E
c(x)=Ecf(x), and strongly

unstable Eu(x)=Euf(x) subspaces. This means that there exist numbers

0 < ls < l
−

c [ 1 [ l
'

c < lu

such that for every x ¥M,

v ¥ E s(x)S ||dxf(v)|| [ ls ||v||,

v ¥ Ec(x)S l −c ||v|| [ ||dxf(v)|| [ l
'

c ||v||,

v ¥ Eu(x)S lu ||v|| [ ||dxf(v)||.

Given x ¥M, one can construct strongly stable and strongly unstable
local manifolds at x. We denote them by V s(x) and Vu(x) respectively. They
can be characterized as follows: there is a neighborhood U(x) of the point
x such that

Vu(x)={y ¥ U(x) : d(f−n(x), f−n(y)) [ Cl−nu d(x, y) for all n \ 0},

and

V s(x)={y ¥ U(x) : d(fn(x), fn(y) [ Clns d(x, y) for all n \ 0}.

Let us stress that the sizes of the strongly stable and strongly unstable local
manifolds are uniformly bounded from below.
We define the strongly stable and strongly unstable global manifolds at

x by

Wu(x)=0
n \ 0
fn(Vu(f−n(x))),

W s(x)=0
n \ 0
f−n(V s(fn(x))).

Recall that a partition t ofM is called a foliation if there exist d > 0, q > 0,
and an integer k > 0 such that for each x ¥M:

(1) There exists a smooth immersed k-dimensional manifold W(x)
containing x for which t(x)=W(x) where t(x) is the element of the parti-
tion t containing x. (The manifold W(x) is called the (global) leaf of the
foliation at x; the connected component of the intersection W(x) 5 B(x, d)
that contains x is called the local leaf at x and is denoted by V(x); the
number d is called the size of V(x).)
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(2) There exists a continuous map fx:L 5 B(x, q)Q C1(D, M)
(where D is the unit ball) such that V(y) is the image of the map
fx(y): DQM for each y ¥ B(x, q).

The strongly stable and strongly unstable global manifolds form two
transversal foliations ofM.
We denote by

q(x, v)=lim sup
nQ.

1
n
log ||dfn v||

the Lyapunov exponent of a nonzero vector v at x ¥M and by q if(x) the
values of the Lyapunov exponents at x. Note that the functions q if(x) are
invariant. There exists a subset L …M of full measure which consists of
Lyapunov regular points (see ref. 27, Sections 1.5 and 2.1). Among other
things Lyapunov regularity of x means that

q(x, v)= lim
nQ ±.

1
n
log ||dfnv||

for all nonzero v ¥ TxM.
An invariant measure m is called hyperbolic on a set L if m(L) > 0

and m-a.e., x ¥L has the property that q(x, v) ] 0 for all nonzero v ¥ TxM.
By neglecting a set of measure 0 we may assume that L … L. For every
x ¥L the tangent space at x admits an invariant splitting

TxM=E
−
f (x) À E+f (x)

into stable and unstable subspaces. Let l−(x)=eq− (x) and l+(x)=eq+(x)

where q−(x) and q+(x) are respectively the largest negative Lyapunov
exponent and the smallest positive Lyapunov exponent at x. For each e > 0
there are Borel functions C(x) > 0 and K(x) > 0 such that

(1) for each n > 0,

||dfn v|| [ C(x) l−(x)n e en ||v||, v ¥ E−(x),

||df−nv|| [ C(x) l+(x)−n e−en ||v||, v ¥ E+(x);

(2) the angle

= (E−(x), E+(x)) \K(x);

(3) for each m ¥ Z,

C(fm(x)) [ C(x) e e |m|, K(fm(x)) \K(x) e−e |m|.
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For every x ¥L one can construct stable and unstable local manifolds
V−(x) and V+(x). They can be characterized as follows: there is a neigh-
borhood U(x) of the point x such that V+(x) is the set of all y ¥ U(x) for
which

d(f−n(x), f−n(y)) [ C(x) l+(x)−n e−en d(x, y) for all n \ 0,

while V−(x) is the set of all y ¥ U(x) for which

d(fn(x), fn(y) [ C(x) l−(x)n e en d(x, y) for all n \ 0.

The manifolds V−(x) and V+(x) are tangent at x to E−(x) and E+(x)
respectively. If f is partially hyperbolic, V+(x) ‡ Vu(x) and V−(x) ‡ V s(x).
The sizes of the stable and unstable local manifolds vary with x in a

measurable way. They are not always uniformly bounded from below, in
contrast to the sizes of the strongly stable and strongly unstable local
manifolds. If d(x) is the size of a stable or unstable local manifold at x,
then for every m ¥ Z

d(fm(x)) \ d(x) e−e |m|.

It is known that the function d(x) depends only on C(x) and K(x); in par-
ticular, d(x) is uniformly bounded from below if C(x) is uniformly
bounded from above and K(x) is uniformly bounded from below.
The families of these local manifolds possess the absolute continuity

property. This means the following. Denote by mu(x) the Riemannian
volume on Vu(x) induced by the Riemannian metric on Vu(x) as a smooth
submanifold in M. Given x ¥M and sufficiently small r > 0, consider the
partition tu of B(x, r) (the ball centered at x of radius r) by strongly
unstable local manifolds Vu(y) with y ¥ B(x, r). Let mu be the conditional
measure generated by m on Vu(y), y ¥ B(x, r). Then the measures mu(y)
and mu(y) are equivalent for, a.e., y ¥ B(x, r).
The families of local manifolds V s(x), V+(x) and V−(x) also possess

the absolute continuity property.
In this paper we deal with the case where f is partially hyperbolic and

has negative central Lyapunov exponents on a set of points x of positive
or full measure (with respect to an invariant measure m on M). For such x
we have E−(x)=Es(x) À Ec(x). In particular, V+(x)=Vu(x). In this case,
we will use the notation Vcs(x) for the stable local manifold V−(x) and we
define the stable global manifold

Wcs(x)=0
n \ 0
f−n(Vcs(fn(x))).
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3. PROOFS

3.1. Proof of Theorem 1

Let us call a point z Birkhoff regular if the Birkhoff averages

j−(z)= lim
nQ −.

1
n

C
n−1

k=0
j(fk(z)) and j+(z)= lim

nQ+.

1
n

C
n−1

k=0
j(fk(z))

are defined and equal for every continuous function j on M. Applying
Birkhoff’s ergodic theorem to a countable dense subset of the continuous
functions shows that the set B of Birkhoff regular points has full measure
inM with respect to m. It follows from the absolute continuity of the stable
local manifolds V−(x) that m-a.e. x ¥ A is Lyapunov regular and has the
property that m−-a.e. z ¥ V−(x) belongs to B, where m− is the Riemannian
volume on V−.
We shall show that any point x ¥ A with the above properties has a

neighborhood in which the backwards Birkhoff average j− is a.e. constant
for any continuous function j. Since f has negative central exponents at x,
we have V−(x)=Vcs(x). The disc Vcs(x) is transverse to the strong unstable
foliation. This and the uniform size of the strongly unstable local manifolds
Vu(z) ensure that the set

N(x)= 0
z ¥ Vcs(x)

Vu(z)

is a neighbourhood of x. The full measure of B in Vcs(x)=V−(x) and the
absolute continuity of the strongly unstable local manifolds ensure that

NŒ(x)= 0
z ¥ Vcs(x) 5B

Vu(z) 5B

has full measure in N(x).
We now use the Hopf argument to show that j− is constant on NŒ(x)

for any continuous function j. Let y ¥NŒ(x). Then y ¥ Vu(z) for a point
z ¥ V−(x) 5B. Since backwards Birkhoff averages of continuous functions
are constant on strongly unstable manifolds and forward Birkhoff averages
of continuous functions are constant on stable manifolds, we obtain

j−(y)=j−(z)=j+(z)=j+(x).

Thus j− is constant on NŒ(x) as desired. L
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3.2. Proof of Theorem 4

Let Diff rm(M) be the space of C
r diffeomorphisms of M that preserve

the smooth measure m.

Lemma 1. There are a neighborhood U of f in Diff 1m(M) and a
constant a > 0 with the following property. For any g ¥U there is a subset
Ag …M with m(Ag) > 0 such that for every x ¥ Ag,

lim sup
nQ.

1
n

C
n−1

j=0
||dg | Ecg(g

j(x))|| [ −a.

Proof. Choose a > 0 such that

F
M
ln ||df | Ecf(x)|| dm(x) < −a. (1)

Since the central bundle Ecg depends continuously on the diffeomorphism g
in the C1 topology, there is a neighborhood U …Diff1m(M) of f such that
for any g ¥U,

F
M
ln ||dg | Ecg(x)|| dm(x) < −a.

For g ¥U, let Ag be set of points x where the forward Birkhoff average of
||dg | Ecg( · )|| is defined and less than −a. It follows from the Birkhoff
ergodic theorem (and the fact that m is a probability measure) that
m(Ag) > 0. If x ¥ Ag, we have

lim
nQ.

1
n

C
n−1

j=0
ln ||dg | Ecg(g

j(x))|| [ −a.

This completes the proof. L

Since

1
n
ln ||dgn | Ecg(x)|| [

1
n

C
n−1

j=0
ln ||dg | Ecg(g

j(x))||,

we see that g has negative central Lyapunov exponents on the set Ag. It
now follows from Theorem 1 that the set Ag is open (mod 0) and g | Ag has
at most countably many ergodic components which are open (mod 0).
We proceed with the following result.
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Lemma 2. There are a neighbourhood V of f in Diff1m(M) and a
number r0 > 0 such that, if g ¥V is a C2 diffeomorphism and x ¥ Ag (the
set defined in Lemma 1), then there is an n \ 0 such that the size of the
stable global manifoldWcs(g−n(x)) is at least r0.

Proof. Set s=exp(−a/3), where a is defined in (1). We call the
number n a s-hyperbolic time for g at x if

||dg j | Ecg(g
−n(x))|| [ s j,

for 0 [ j [ n. Corollary 3.2 of ref. 21 and the remarks preceding it imply
that if g ¥U and x ¥ Ag, then there are infinitely many s-hyperbolic times
for g at x.
Denote by Bcs(y, r) the ball in Vcs(y) centered at y of radius r. It

follows from Lemma 2.7 in ref. 21 that we can choose r0 > 0 and a neigh-
borhood V …U of f such that for every C2 diffeomorphism g ¥V and
any s-hyperbolic time n for g at x,

dn=diam(g j(Bcs(g−n(x), r0))) [ s j/2 for 0 [ j [ n.

Since s < 1, we can make dn as small as we wish by choosing n to
be a sufficiently large s-hyperbolic time for g at x. In particular, we can
ensure that gn(Bcs(g−n(x), r0)) lies in the stable local manifold Vcs(x).
Then Bcs(g−n(x), r0) is contained in the stable manifold Wcs(g−n(x)) as
claimed. L

We now repeat the proof of Theorem 1 for g | Ag. Instead of using
Vcs(x) to construct a neighborhood of x, we use Bcs(g−n(x), r0) to construct
a neighborhood of g−n(x), where n is a large s-hyperbolic time for g at x.
This gives us the following statement.

Lemma 3. There is a positive number r̃0=r̃0(f) such that any
ergodic component of g | Ag contains a ball of radius r̃0.

It remains to show that the set Ag has full measure and g|Ag is ergodic.
Since f is accessible, the result from ref. 10 mentioned in the introduction
tells us that the f-orbit of a.e. point inM is dense. Thus our desired claims
hold when g=f, and they would hold for any g close enough to f if the
accessibility property were open. This, however, is an open problem (see
ref. 29 for some interesting results in this direction).
We will therefore exploit a weaker property, which is sufficient for

our purpose (even in the case g=f). Given e > 0, we say that a diffeo-
morphism g is e-accessible if for every open ball B of radius e the union of
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accessibility classes passing through B is M. An equivalent requirement is
that the accessibility class of any point should enter every open ball of
radius e.

Lemma 4. Assume that f has the accessibility property. Then the
following properties hold for every e > 0.
(a) There exist a > 0 and R > 0 such that for any p, q ¥M one can

find a us-path that starts at p, ends within distance e/2 of q, and has at
most a legs, each of them with length at most R.
(b) There exists a neighborhood U of f in the space Diff 2(M) such

that every g ¥U is e-accessible.

Proof. (a) Let q1,..., qN be an e/4-net in M. For each p ¥M and
each qk, choose a us-path from p to qk; let a(p, k) be the number of legs
and R(p, k) the length of the longest leg in this path. Set

R(p)=max
k
R(p, k) and a(p)=max

k
a(p, k).

By continuity of the foliations Wu and W s, every point p ¥M has a neigh-
bourhood U(p) such that, for each k, any point in U(p) is joined to some
point in B(qk, e/4) by a us-path which has at most a(p) legs each of length
at most 2R(p). The sets {U(p)} form an open cover of M. Let
{U(p1),..., U(pm)} be a finite subcover. Then R=maxi 2R(pi) and a=
maxi a(pi) satisfy the condition of part (a).
(b) The statement follows from (a) and the continuous dependence of

the leaves ofWu andW s on g. L

We proceed with the proof of the theorem. Given e > 0, we say that an
orbit Orb(x)={fn(x) : n ¥ Z} is e-dense if the points of the orbit form an
e-net.

Lemma 5. If g is e-accessible, then almost every orbit is e-dense.

Proof. It suffices to show that if B is an open ball of radius e, then
the orbit of, a.e., point enters B. To this end, let us call a point good if it
has a neighborhood in which the orbit of a.e. point enters B. We now wish
to show that an arbitrary point p is good. Since g is e-accessible, there is a
us-path [z0,..., zk] with z0 ¥ B and zk=p. We shall show by induction on j
that each point zj is good.
This is obvious for j=0.
Now suppose that zj is good. Then zj has a neighborhood N such that

Orb(x) 5 B ]” for a.e. x ¥N. Let S be the subset of N consisting of
points with this property that are also both forward and backward
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recurrent. It follows from the Poincaré recurrence theorem that S has full
measure in N. If x ¥ S, any point y ¥W s(x) 2Wu(x) has the property that
Orb(y) 5 B ]”. The absolute continuity of the foliations W s and Wu

means that the set

0
x ¥ S
W s(x) 2Wu(x)

has full measure in the set

0
x ¥N
W s(x) 2Wu(x).

The latter is a neighborhood of zj+1. Hence zj+1 is good. L

Theorem 4 now follows from Lemmas 3, 4 and 5. L

3.3. Proof of Theorem 2

If f is essentially accessible, the accessibility class of a.e. point is dense
in M. With minor modifications, the proof of Lemma 5 shows that this
property imples that a.e. point has a dense orbit. Theorem 2 is then imme-
diate from Theorem 1. L

3.4. Proof of Theorem 3

By Theorem 2, f is ergodic and has negative central exponents, a.e.,
with respect to m. Hence there exists b > 0 such that for, a.e., x ¥M

lim
nQ+.

1
n
ln ||dfn | Ecf(x)|| [ −b.

Integrating overM we obtain

lim
nQ.

1
n
F
M
ln ||dfn | Ecf(x)|| dm(x) [ −b.

In particular, there exists n0 > 0 such that

F
M
ln ||dfn0 | Ecf(x)|| dm(x) < 0.

Hence fn0 satisfies the hypotheses of Theorem 4 and thus is stably ergodic.
It follows that f itself is stably ergodic. L
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